43 research outputs found

    Evaluating how variants of floristic quality assessment indicate wetland condition

    Get PDF
    Biological indicators are useful tools for the assessment of ecosystem condition. Multi-metric and multi-taxa indicators may respond to a broader range of disturbances than simpler indicators, but their complexity can make them difficult to interpret, which is critical to indicator utility for ecosystem management. Floristic Quality Assessment (FQA) is an example of a biological assessment approach that has been widely tested for indicating freshwater wetland condition, but less attention has been given to clarifying the factors controlling its response. FQA quantifies the aggregate of vascular plant species tolerance to habitat degradation (conservatism), and model variants have incorporated species richness, abundance, and indigenity (native or non-native). To assess bias, we tested FQA variants in open-canopy freshwater wetlands against three independent reference measures, using practical vegetation sampling methods. FQA variants incorporating species richness did not correlate with our reference measures and were influenced by wetland size and hydrogeomorphic class. In contrast, FQA variants lacking measures of species richness responded linearly to reference measures quantifying individual and aggregate stresses, suggesting a broad response to cumulative degradation. FQA variants incorporating non-native species, and a variant additionally incorporating relative species abundance, improved performance over using only native species. We relate our empirical findings to ecological theory to clarify the functional properties and implications of the FQA variants. Our analysis indicates that (1) aggregate conservatism reliably declines with increased disturbance; (2) species richness has varying relationships with disturbance and increases with site area, confounding FQA response; and (3) non-native species signal human disturbance. We propose that incorporating species abundance can improve FQA site-level relevance with little extra sampling effort. Using our practical sampling methods, an FQA variant ignoring species richness and incorporating non-native species and relative species abundance can be logistically efficient, easily understood, and effective for wetland assessment

    A rapid method to assess salt marsh condition and guide management decisions

    Get PDF
    Salt marshes are increasingly vulnerable to degradation and loss from accelerating sea-level rise and other pervasive disturbances, spurring a need for broad, science-based information to guide management. The Salt Marsh Rapid Assessment Method, MarshRAM, was designed to address this need by documenting information characterizing salt marsh type, setting, ecological value, disturbance, integrity, and opportunity for landward migration at the site scale. We used the method to collect information from onsite and remote observations of thirty-one (31) salt marshes in Rhode Island, USA. MarshRAM\u27s Wetland Disturbance Index is a checklist that ranks the intensity of individual and cumulative human disturbances, while the Index of Marsh Integrity (IMI) is generated using a novel walking-transect approach to rapidly characterize site-wide vegetation-community composition. The IMI was designed to reflect ecological response to direct disturbances and inundation stress, and our finding that IMI strongly correlates with cumulative disturbance + marsh platform elevation indicates it works as intended. A strong correlation between IMI components and historic marsh loss suggests that salt marsh community cover can also serve as an indicator of salt marsh resilience. Our study marshes diverge from accounts of historic New England salt marsh conditions in that meadow high marsh species no longer dominate the high marsh zone, Spartina alterniflora is now the dominant high marsh species, and severe edge erosion and invasion by Phragmites australis are ubiquitous. We demonstrate how MarshRAM data can be analyzed to inform restoration and conservation strategies and policy decision-making. For example, our findings suggest that inundation stress is strongly impacting marsh platform integrity, high-marsh vegetation loss is a strong indicator of degradation and vulnerability, and unassisted landward marsh migration may already be promoting resilience to inundation stress. We suggest adapting MarshRAM to meet the management needs of other regions or broader applications

    The neurocognitive functioning in bipolar disorder: a systematic review of data

    Full text link
    corecore